If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2=262
We move all terms to the left:
49x^2-(262)=0
a = 49; b = 0; c = -262;
Δ = b2-4ac
Δ = 02-4·49·(-262)
Δ = 51352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51352}=\sqrt{196*262}=\sqrt{196}*\sqrt{262}=14\sqrt{262}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{262}}{2*49}=\frac{0-14\sqrt{262}}{98} =-\frac{14\sqrt{262}}{98} =-\frac{\sqrt{262}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{262}}{2*49}=\frac{0+14\sqrt{262}}{98} =\frac{14\sqrt{262}}{98} =\frac{\sqrt{262}}{7} $
| 240=17x | | 33-1.5y*2=180 | | -1/2(12n+4)=24 | | 3(2x-50=9 | | 13=(-5)x+2/3x | | 65+32x=56789876543 | | 1/9s=20 | | 160=17x+80 | | 4(x=5)=34 | | m/6=91 | | 36x-24=32x+32 | | 666x(24)/3^2(2)*35x=34567(2)/12+654/12+1234 | | 3(x=7)=77 | | z-48/5=6 | | 4x=16x+12 | | 2/3x+(-5)x=13 | | 8-4n=4(-4-7n) | | -11.61=-6-3.3x | | n-35=180 | | 15=4m+7 | | 33x=17x+80 | | 2y-6=-4y+9 | | 2.7-9.4x=-150.52 | | 4x^2-100x+600=0 | | 15=4t+3 | | x*0.65=10 | | 5q-41=13 | | 5b+6=16 | | -51.78=8.7-6.3n | | -26+5p=2(1-p) | | v+36/6=9 | | x*0.65=20 |